SGM5 —Méthode des éléments finis Corrigé 10 - 2020

Exercice 1l

La formulation intégrale du probléme s’exprime par I'égalité
jg (-TOTOu-?phuluckdy = 0 O
ou A dénote le déplacement transversal virtuel. En intégrant par parties, on a
T _ T — 2
jQT(Du) 0 éu dxdy jaQTN Oududs = w jQ phududxdy — Odu

ouN est la matrice des cosinus directeurs de la normale extéri@ugefrontiére .
Les conditions aux limites étant essentielles, leurs contreparties virtuelles s’annulent sur la
frontiere, de sorte que la forme intégrale se réduit a

jQT@u)TDa‘udmy = wzjg phudidxdy — Odu
La forme faible du probleme s’écrit ainsi

uld U : jQT@u)TDa‘udmy—wsz ohudickdy = 0 O OV
avec les classes de fonctions

U= 9= {wmx )| Wx y)OHY(Q); w9 =0 Os00}

H{Q ={wx Y |wOLYQ); owoxOLQ); owayO LY Q)}

ou wdénote indifféremment le déplacement transversal réel u ou wixtuel
La forme faible approchée a pour expression

SJoU"0v [, TOU") DA ddy-a? [ ) phu"ddey = 0 D" O V"o

ot u" et A" sont les déplacements approchés réel et virtuel él'bét 1" sont les sous-espa-
ces respectifs de &t ¥/

Dans la méthode de Galerkin, les approximatidret A" sont choisies sous les formes d'or-
dre n suivantes

u"(x, y) =iai hi(x, Y)
i=1

a"(x, y) =i5aihi(x, y)

i=1
dans lesquelles les grandetr§, y) sont les fonctions de forme et les varialdest da; sont

les inconnues discrétes réelles et virtuelles. En portant ces approximations dans la forme fai-
ble approchée, on obtient le probléme aux valeurs propres d’ordre n ci-apres

(K -a*M)a = 0
ou les composanteg &tm; des matrices respectives de rigidit&€kde massM s’écrivent

kij = [ , TI@h /ax)(@h; 1ox) + (@hy 1dy)(@h iy ] cxdy

m; = [, Ahhh; oxdy
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En choisissant une approximation biharmonique a un parametre, respectant les conditons de
bord essentielles sur tout le pourtour de la membrane,

h _ _ X 7y
u" (x, y) =ayh(x, ,Y )=C03§ — |c0o§ —
(% Y) = @iy (x, y) h by)= cof 7% Jeod 2
les matrices de rigidité et de masse se ramenent a des scalaires
T (a b

M=b”@mwﬂmmﬁmw=7{ggj

my, = [ phhidkdy = phab

La premiere pulsation propre approchée vaut donc

_ (1 1AN\T 1. 1)\T
a = o = (g = b

ce qui correspond en fait a la valeur exacte car 'approximation choisie est le premier mode
propre de la membrane.

Dans I'approche globale des éléments finis, les approximaticetsiul’ ont les allures

u"(x, y) = gihi(x, y)
i=1

a"(x, y) = aphi(x, y)
i=1

danslesquelles les grandeungx) sont toujours les fonctions de forme, mais cette fois a sup-
port compact, et les variablgset &g sont les déplacements transversaux nodaux réels et vir-
tuds. En portant ces approximations dans la formulation faible approchée, on obtient le pro-
bleme aux valeurs propres d’ordrsuivant

(K -a*M)g = 0
ou les composantdg et m; des matrices respectives de rigiditéet de mass& restent
éciites sous les formes

kij = [, TI(ON/3x)(3h;/3x) +(3h/dy)(ah; /ay)] ciecy

m; = [, Ahhh; oxdy

En choisissant un réseau a un seul élément fini quadratique lagrangien a 9 nceuds, le déplace-
ment est approché uniqguement par la fonction de forme nodale relative au noeud central 9,
puisque toutes les autres fonctions doivent étre nulles pour respecter les conditions essentiel-
les de bord,
h _

u (X, y) = dghy(x, y)
En appliquant le changement de variables

é=xla n=ylb
a lafonction de base relative au nceud 9 d’'un élément lagrangien biquadf&ique

®hy €.17) = @-&%)A-n?)
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on trouve pour la fonction de forme cherchée
ho(x y) = [L-(¥8)?][1-(y/b)’]

fonction de forme hy(x, y)

En placant cette fonction dans I'expression des composantes des matrices de rigidité et de
masse, on obtient

128T(a b
Koo = | - T[(Ohe/X)? + (Ohy/Oy)? Jaxdy = ==——| =+ =
oo = [ TLON,/o%)” + (Oh By)? oy 45(b aj
_ 2 _ 256
Moy = [, A chdly = 770 phab

La premiere pulsation propre approchée a ainsi pour valeur

_ _ |5 1 1,3\T _ 1 1)T
“ 7 Ve = E\/(E*b—zh M P

sat une erreur de 0,7%.

On notera que I'approche globale, adoptée ici, de la méthode des éléments finis n’est applica-
ble concrétement qu’en présence d’un seul élément fini. Dans cette stratégie, les fonctions de
forme nodales doivent en effet étre construites, ce qui n’est envisageable que si I'élément fini
couvre le domaine entier.

Exercice 2

Prenant une valeur unitaire au nceud correspondant et une valeur nulle aux autres points
nodaux, les fonctions de ba3e (i = 1, 2, ..., 12) d’'un élément fini lagrangien quadratique-
cubigue a 12 nceuds sont construites par produits normés de deux polyndmes lindagtes en

de trois polynébmes linéaires en conduisant a des polyndmes de Lagrange quadratiques-
cubiques. On trouve ainsi pour les nceuds mentionnés

ehl(qz ,7) - (5_52) (5_53) . (,7_,72) (,7_,73) (,7_,74)
, ($1=¢2) (61=63) (71—12) (1 —173) (71— 114)

-9 -0 -) @+1/3) @w-13
1-1) (-1-0) (-1-1) 1+1/3) 1-1/3)
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_ L e paema-on?
3256 DA-7)A-97°)

(§-6) (£=¢3) (n—m) n-n,) (n—n,)
($2=¢1) (§2=63) (73—m) (73—12) (N3—14)

E+H) -0 w+) »-) @w-13
1+1) (1-0) 1/3+1) (1/3-1) 1/3-1/3)

9 o
55@”1)(1 n°)a-3m)

(£-¢1) (£-¢)  -nm) 1-n3) (71-14)
($3=¢1) ($3=¢2) (72 =m1) (72—=13) (72—14)

- @+Y) €D @+ @+V3) @-V3) _ 1 4 e _gn2
©(0+)) (0-D) (@+D) @+1/3) (@-1/3 1g 47 MI=97)

(€-¢1) (£-$)  -n) (1-n;) (7-15)

($3=¢1) ($3=¢2) (74 —11) (74=172) (74-173)

_ D E-D. @) - @rud _ 9
O0+1 (0-1) @/3+1) (A/3-1 (1/3+1/3) 16

ou £ =[-1, +1] ety = [-1, +1] sont les coordonnées naturelles de I'élémefitet-1,& = +1
et&=0etn =1, =+1, n3 = -1/3 etn, = +1/3 sont respectivement les abscisses ou
ordonnées des rangées de points nodaux (dans I'ordre, rangées d’extrémité, rangées internes).

he (£, 1) =

*h, (&, 7)

el“ll(f, n)

(-&*)a-n*)a+37)

On relévera que ces fonctions auraient pu étre obtenues directement en multipliant la bonne
fonction quadratique e&avec la bonne fonction cubique gn

fonction de base ‘h,(&,1) fonction de base “hy(&,n)

7T
/if
/

fonction de base “h,(&, 1)

——
=]

‘&




